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ABSTRACT 

 

In this paper, first, I will give a brief concept about what the edge and corner is, and for what 

purpose of catching that information. Then I introduce several popular methods to detect 

edges and corners and give some experimental results. In early researches, usually the edge 

enhancement operators have been derived heuristically. We will see that an analytic approach 

to the design of these operators, and recent algorithms to detect the corners, edges, ridges, 

valleys, isolated dots, saddles, and plains. These are important physical features for the 

intensity distribution of an natural image. Besides, the accuracy in detecting these 

discontinuities and efficiency in implementing these operations are also quite important 

criteria for using an algotithm in the patch of computer vision. 

 

1. INTRODUCTION 

 

Local discontinuities in image luminance from one level to another are called luminance 

edges, which are considered as the boundaries between different textures. Since the edges for 

an image are always the important characteristics, they offer an indication for a higher 

frequency. The gray level corner is represented as the junction between two or more 

straight-line edges. Detection of edges and corners for one image may help for reducing the 

amount of data stream, and also help for well matching, such as image reconstruction and so 

on. 

 

The most popular way of detection approach is differential detection which computes the 

gradient from two orthogonal orientations. If the gradient is sufficiently large, an edge along 

the specified axis is denoted, as in Fig. 1. 
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Fig. 1 Block diagram for detection 

 

And as the definition of differentiation in continuous domain 
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since in discrete domain of a digital image, x  is equal to one pixel, we have   
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where ),( kjGR  denotes the gradient from row-axis, and ),( kjGC  denotes the gradient 

from column-axis. Because of horizontal differentiation can only react on the variations along 

the vertical direction and vertical differentiation can only react upon the variations along the 

horizontal direction, we combine those two gradients together for a well detection. As a result 

we have a square-root gradient that combine those two directions, which is called a spatial 

gradient amplitude：  

 
22 ),.(),(),( kjGkjGkjG CR   (3) 

But we have pay attention to that the two orientations can be given at any orthogonal vectors 

with angles with respect to the row axis. The optimal orientation to detect always varies with 

each natural image.  

   

Assume that there is an ideal smooth valley, as in Fig. 2, and define  

 )1,()1,(),(  kjfkjfkjGR   

  ),1(),1(),( kjfkjfkjGC   (4) 

As an example, the row gradient along the center row of and the column gradient along the 

center column of this smooth valley model are the following, as in Fig. 2. 
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Fig. 2 The gradient for row and column 
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If the threshold is on a/2, the edge is labeled on which gradient is equal to or over than a/2. 
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Fig. 3 Smooth valley 
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2. SEVERAL MODELS FOR DETECTION 

 

The operators on the pixel neighborhoods that form the row and the column gradients can 

actually be expressed as the convolution relationships  

 ),(),(),( kjHkjfkjG RR   

 ),(),(),( kjHkjfkjG CC   (5) 

Due to the convolution type, we have the 
180  rotation upon the definition of the gradient as 

an impulse response. Larger size of the impulse response models will provide a smoother 

result because of the gradient impulse response always combine with noise removal impulse 

response. Such small luminance fluctuations will be ignored to increase the accuracy on 

detection. 

 

As an example as the Sobel detector model, is a two by two box filter follow by a two by two 

gradient impulse response, as in Fig . 4. 
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Fig. 4 Sobel detector model for column and row gradients 

 

Both two impulse responses are actually convolution of a box filter for noise removal by the 

edge detector impulse response. 

 

In Table 1, we have few operators that are 3x3 and 7x7 model size gradient detectors. Note 

that row operator and column operators are transpose relation to each other; as a result, 
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usually we only create one model that is enough on implementation of MATLAB. By 

computing the row gradient and column gradient, the spatial gradient magnitude is final 

result. 

   

Table 1 Common impulse responses respect to their edge operators  
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Now we consider the neighborhood Gaussian- shaped weighting functions as a means of 

noise suppression. It gives decreasing importance for pixels on neighborhood far from the 

center 
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The Argyle operator for horizontal gradient detector model can be expressed as a sampled 

version on the continuous domain impulse response, by taking the central pixel as zero index 
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where s and t are two variances. The vertical impulse response function can be expressed in 

the same way. The Macleod operator horizontal gradient impulse response function is given 

by 

   ),(),(),(),( tygssxgssxgkjH R   (8) 

From previous discussion, we see that the gradient impulse response sometimes have the 

convolution form of a smooth filter by a differentiation filter. Since this concept and we know 

the larger size for the model can detect with lots of accuracy, we consider a large model that is 

compound with one gradient impulse response in the Table 1 and smooth filter of same size  

 ),(),(),( kjHkjHkjH SG   (9) 

 

3. CRITERIONS ON DETECTION 

 

Although we see lots of gradient impulse response models, we still do not know how to 

choose appropriate one to detect given image. Canny has taken an analytic approach to the 

design of such operators, which is assumed that edge detection is performed by convolving a 

one-dimensional continuous domain noisy edge signal )(xf  based on three steps  

1. Good detection 

The amplitude signal-to-noise ratio of the gradient is maximized to obtain a well 

accuracy. 

 SNR 
n

E hSh



)(
 , (10) 

where 

Eh  denotes an amplitude of one-dimensional continuous domain model of step edge 

n  denotes a standard deviation of a plus additive white Gaussian noise 

)(xh  denotes the gradient impulse response function with the range ],[ ww  
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2. Good localization 

The marked edge points should be as close to the center of the real edge as possible. 
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where 
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3. Single response 

To improve the resolution of the edges, the distance between peak gradient amplitudes, 

denoted as mx , is set to some fraction k  of the width of gradient impulse response. 

 kwxm   (14) 

 

Another approach is to compute gradients in a large number of directions with a set of 

template gradient impulse response arrays. Each gradient impulse response of template is 

rotational by the angle decided by the number of the edge directions to each other, as in Table 

2. Then we choose the maximum magnitude of those gradients to involve in detection 

),(),(),( kjHkjFkjG ii   

 |}),(||,........),(||,),({|),( 21 kjGkjGkjGMAXkjG m  (15) 

 

Table 2 Kirsch template generation 
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In a particular way, we can pick each m by m block of given image for template operating and 

choose each maximum gradient magnitude, since the directions of edges are always not same 

in entire image.    

 

4. SECOND-ORDER DERIVATIVE EDGE DETECTION 

 

As in the first-order derivative detection, we label edge on the point which gradient 

magnitude is over than some threshold is local maximum in the gradient magnitude. This can 

be detected by second-order derivative on a zero crossing. Laplacian is one of the 

second-order derivative types 
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The right side of the equation (17) is equal to zero if ),( yxF  is a constant or changing 

linearly in gradient magnitude. In the discrete domain, the simplest approximation to the 

continuous Laplacian is to compute the difference of slopes along each axis 

)]1,(),([)],()1,([),(  kjFkjFkjFkjFkjG    f o r row  

           )],1(),([)],(),1([ kjFkjFkjFkjF     f o r column (18) 

From this relation, we have the gradient impulse response 
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One of the effective Laplacian responses is the Laplacian of Gaussian (LOG) edge detection 

operator. Since the Laplacian and the convolution are linear computation on the original 

image, we can put the Laplacian inside the convolution computation on the Gaussian 

operation  
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This continuous domain LOG response can also be approximate closely by a difference of 

Gaussian (DOG) operator response 

 ),(),(),(),(),( 1221 skgsjgskgsjgkjH   (21) 

which is often called the Mexican hat filter for the curve of the continuous domain response 
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that it is an even function, as Fig. 5. 
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Fig. 5 The LOG and its approximation, DOG. Blue line denotes the LOG and red line denotes 

the DOG. In this figure, the LOG is on variance equal to 1; the DOG is on 1s  equal to 

1 and 2s  equal to 3 

 

This is so called the four-neighborhood Laplacian impulse response. Actually, we will see 

other types of Laplacian impulse response for the directed second-order derivative method. In 

the Fig. 6, the corner detection impulse response is implemented by the Laplacian response. 

Note that a zero crossing will not exist at the single-pixel transition response model. The edge 

corner should be marked at a pixel that is with a positive response and one of neighborhoods 

with negative response.  
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Fig. 6 single pixel transition Laplacian response 

 

We also can directly find the second-order derivative of a continuous domain ),( yxF  by 

estimating the edge angle   with respect to horizontal axis  
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In discrete domain, one approximation to this function is to employ the first-order derivative 

edge detection of row and column gradient relation to estimate the direction of the edge. Then 

take the angle information into the like-Laplacian method to approach in the discrete domain. 

Another approach, proposed by Haralick, involves approximating ),( yxF  by a two-order 

polynomial for the pixel neighborhood that takes the central pixel as zero index. Then we do 

the second-order differentiation directly on this approximated polynomial  
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Consequently, we multiply the coefficients of the tree by tree response model to the pixel 

position of the approximated coefficients, as in Fig. 7, that can have some conditions for 

coefficients in response model. There are many polynomials can be an approximation, but we 

prefer to this kind of orthogonal polynomials for its low computation. Others like the 

Chebyshev orthogonal polynomials are also good choices   
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Fig. 7 The 3x3 two-order approximated coefficient block 

 

6. CONCLUSIONS 

 

I have fully studied about the references about edge and corner detections. However, for the 

constraints on the pages and my purpose, I only wrote a proportional summarization but not 

the detail histories and algorithms about edge and corner detections. I believe that I have 

completed the fundamentals of the detections. On the later research, there are still many 

enhanced algorithms to develop .My future works may still keep on finding the latest 
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algorithms but in the color image. Since the definition for an edge of a color image would be 

in several ways and pixels have not only intensity component but also hue and saturation 

components that form the vector differences between R, G, B. 
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